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Abstract— This work implements a trajectory estimation
system for objects in 3D space utilizing a 2D automotive grade
radar system and common camera. The work includes data
association, trajectory estimation and outlier rejection. The
application focus of this work is the trajectory estimation
of unwanted unmanned aerial vehicles (UAVs) which makes
motion information from the target being tracked unavailable.
This increases the dependance of the system on effective data
association and outlier rejection. The estimation methodology
must be compatible with the non-linear nature of the problem.
For this reason the extended Kalman filter (EKF) is chosen
due to its computational efficiency and a gating region is
established from the prediction of the EKF allowing for a
global nearest neighbour (GNN) data association approach
to be applied. Lastly outlier rejection is performed using a
dynamic innovation saturation method.

A presentation of results is available at Video Results.

I. INTRODUCTION

The availability of UAVs to the general public has signif-
icantly increased over recent years. People use UAVs for a
range of activities such as photography and recreation. De-
spite their benefits and capabilities, UAVs have the potential
to pose a threat to areas such as prisons where UAVs are
utilized to smuggle drugs and phones to inmates and high
security areas where UAVs may be used to transport and
detonate explosives. UAVs also have the potential to harm
the general public when they are flown over large crowds at
outdoor events and upon collision with commercial aircrafts
in an airport setting.

Significant recent attention has been brought to the ef-
fective trajectory estimation of UAVs in 3D space. Various
sensors such as radar, acoustic, camera and LiDAR have
been applied to problem of UAV trajectory estimation. One
method often used for UAV detection in prison environments
is radio frequency (RF) detection. Despite advancements in
RF-based UAV localization, these systems inherently rely
on the UAV communicating with a ground station which
does not occur with autonomous UAVs [1]. Work in [2]
is able to estimate UAV pose with six degrees-of-freedom
using cameras set up throughout a confined space. However,
for UAV tracking in large open spaces cameras are not
ideal due to their lack of depth information when utilized
without a range providing sensor. Work in [3] conducts UAV
detection with a standard automotive LiDAR sensor. Poor
resolution at range leads to the inability of current LiDAR
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solutions to provide sufficient return information for effective
UAV trajectory estimation. [3] proposes a panning LiDAR
system with a extremely narrow field of view (FOV) and high
laser power to perform effective UAV detection at kilometre
ranges. However, this combination of narrow FOV and high
laser power makes the system not compliant with Class 1
laser safety standards required for operation in open public
environments.

In the current airport setting, long range radar systems
are commonly employed for monitoring of air traffic. These
systems are unable to detect UAVs as the typical pulse widths
utilized to allow for kilometre detection cause the minimum
detection range to be approximately 250m for the average
system. Advancements in radar technology for automotive
applications has resulted in significant reduction in price of
millimetre wave radar systems. These systems overcome the
problems associated with longer wavelength radar systems
typically found at airports. The capabilities of automotive
radar systems for trajectory estimation of UAVs will be
evaluated in this work.

In addition to an adequate sensor, effective trajectory
estimation must be performed for a complete UAV tracking
solution. This estimation problem is non-linear in nature
and will therefore require a solution which can account
for non-linearities. Two common methods for trajectory
estimation with non-linear systems are the extended Kalman
filter (EKF) and the sigma point Kalman filter. The EKF
involves linearization through first-order derivative. It is a
computationally effective method, but has the possibility of
corruption of the posterior mean and covariance. In contrast,
the sigma point Kalman filter preserves the mean and co-
variance. One implementation of the sigma point Kalman
filter is the unscented Kalman filter which involves selection
sigma points which preserve the mean and covariance of the
prior, passing the sigma points through the non-linearity and
calculating the posterior mean and covariance from the points
passed through the non-linearity [4].

We hypothesize that a 2D radar sensor ground station
can be effectively utilized with a single camera to perform
trajectory estimation of an UAV in 3D space without any
communication with the UAV. This work provides a prelimi-
nary evaluation of UAV trajectory estimation through the use
of a reflective radar target in place of a UAV. Thus we will
seek to determine if trajectory estimation is possible for an
idealized target. For this work it is assumed that the target
remains within the FOV of both the single radar and camera.
This project will therefore not aim to solve issues related to
FOV coverage by multiple ground stations.

https://www.youtube.com/watch?v=0WDYv8dbB-E&feature=youtu.be


Results obtained show that a radar-camera ground station
can be utilized to estimate the trajectory of an object in 3D
space if the input data-stream is consistent enough to perform
effective data association. The significant noise presence in
radar data makes association difficult as any inconsistency in
the radar data may lead to a divergence of the estimated tra-
jectory. Overall, this work has the potential to provide proof
of concept for a cost effective UAV trajectory estimation
system.

This paper is organized into two main categories. First,
in the methodology section of the paper the problem will
be formulated in detail and the process used to solve the
problem will be discussed and supported. Second, in the
results section of the paper, both simulation and experimental
results will be presented and reviewed.

II. METHODOLOGY

The first task presented in any estimation problem is to
define the states that will be estimated.[

xk yk zk ẋk ẏk żk
]T (1)

In this work the cartesian coordinates and velocity of the
target are estimated in three dimensions. The motion of these
states is defined using the constant velocity motion model
according to 2.
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ẏk
żk
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Where T is the time interval and wk is the process noise.

The estimated states in this work are statistically dependant
upon each other and as a result the process noise covariance
matrix Qk will reflect this.

wk ∼N (0,Qk) (3)

The process noise covariance for the constant velocity
motion model can be obtained via Equation 4 as shown in
[5].
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where q is a constant scaling factor.
We begin creating our observation model by establishing

that the single radar sensor solution is insufficient. The defin-
ing observation model for a radar only system is Equation
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where Rk is range, Ak is Azimuth, Ṙk is range rate and nk is
the measurement noise defined in Equation 7 as zero-mean
with a covariance matrix Rk.

nk ∼N (0,Rk) (7)
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Intuitively it can be seen that the radar only observation
model will not be observable over the the six estimated
states. This can be theoretically shown through the Fisher
Information Matrix (FIM) [6]. The FIM is defined as

Fθ (X) = COVθ{∇θ ln[Lθ (X)]}
= Eθ{∇θ ln[Lθ (X)]∇T

θ ln[Lθ (X)]} (9)

where θ represents the observability parameters/system
states, X is the measurement vector and Lθ (X) is the likeli-
hood function of the observability parameters.

Lθ (X) = pX (X |θ) (10)

A system with zero-mean gaussian noise nk and an invertible
covariance matrix R has the FIM,

Fθ (X) = ∇θ h(θ)R−1
∇

T
θ h(θ) (11)

where h() is the observation model of the system. Appendix
IV-A theoretically proves that the observation model in
Equation 6 is unobservable. Keeping cost effectiveness in
mind, a single camera is chosen to capture additional state
information. With the addition of a camera, the observation
model will be defined according to Equation 12.
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where uk and vk are the horizontal and vertical pixels loca-
tions and fu and fv are the camera focal lengths in horizontal
and vertical pixel coordinates. nk is extended to include the
camera measurement variance. It should also be noted that
the notation of the camera portion of the observation model
has been modified to fit the radar convention of x being
downrange. To test the observability of the system the FIM
is applied to the updated observation model. Appendix IV-B
proves via the FIM, that even with the addition of a camera to
the sensor suite, the system is still unobservable. However,
the system can be shown to be locally weakly observable
through the construction of an observability matrix from
the gradients of the the Lie derivatives of our non-linear



measurement model [7][8]. This proof is shown in Appendix
IV-D. In addition, if the velocity states are removed from
the set of estimated states, the radar-camera system is fully
observable as shown in Appendix IV-C. Work will proceed
with the radar-camera system as the 3D object location in
space is observable despite the UAV motion not being fully
observable.

The reference frames present in this system are shown in
Figure 1. The radar and camera each have their own reference
frames with some known transformation Tca between them.
For the observation model in Equation 12 we have defined
the camera and radar reference frames identically meaning
that the transformation matrix Tcv is the identity matrix.
Additionally, the Vicon reference frame can be seen in Figure
1. The Vicon motion capture system will be discussed further
in Section III-C as it will be utilized to provide ground
truth information for evaluation of the experimental results
obtained.

Fig. 1. Frame Diagram

Now that the problem motion and observation models have
been defined, an appropriate trajectory estimation method
can be applied to solve the estimation problem. Due to the
non-linearity of the radar measurement model the extended
Kalman filter (EKF) was utilized. The EKF offers computa-
tional benefits over other non-linear estimation methods so
it is an ideal non-linear solution if it produces sufficiently
accurate trajectory estimation for the task considered. The
EKF is defined by the following equations [5]:

P̌k = Fk−1P̂k−1FT
k−1 +Q′k (13)

x̌ = f(x̂k−1,vk,0) (14)
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−1 (15)

P̂k = (1−KkGk)P̌k (16)

x̂k = x̌k +Kk(yk−g(x̌k,0)) (17)

where P̌k is the predicted covariance matrix, x̌ is the pre-
dicted state, Kk is the Kalman gain, P̂k is the estimated
covariance matrix, x̂k is the estimated sate and yk is the
measurement. Fk and Gk are the linearization of the motion
and observation models respectively as shown in Equation
18 and Equation 19.
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In order to perform trajectory estimation, data associ-
ation must be performed for both the camera and radar
data-stream. Data association for camera data is performed
through external association as cameras provide colour in-
formation which can be utilized to associate image data
without input from the estimation algorithm. However, ex-
ternal association is not feasible for captured radar data as
it does not provide unique features by which to associate
data. Figure 2 shows all measurements that are returned
within the field of view (FOV) considered. The Vicon ground
truth measurements are shown in green and the closest radar
measurement at each timestep are overlayed in red. It can
be seen that periods of consistent and inconsistent radar
data exist in the presence of many non-target measurements.
To solve radar association, we employ a data association
methodology involving EKF-based prediction, gating and eu-
clidean distance association. At each timestep, a conservative
gating region is established using the prediction of the EKF.
Only measurements falling within the conservative gating
region can be associated to the trajectory being estimated.



If multiple measurements fall within the gating region, the
nearest neighbour based on euclidean distance is associated
to the trajectory. If no radar measurement falls within the
gating region, the state of the trajectory is propagated forward
without a radar measurement.

Fig. 2. Radar Measurements Projected in 2D Plane

It is inevitable that imperfections will occur in data as-
sociation. For this reason, outlier rejection is vital to the
performance of the estimation algorithm as outliers can
cause an EKF to diverge. Recent work [9] utilizing dynamic
saturation of the EKF innovation is implemented in this
project. The dynamic nature of the saturation point allows
for outliers in the innovation to be completely rejected. At
the same time, if a large innovation produced is sustained
the innovation saturation point will grow accordingly. In
comparison, a static innovation threshold would not fully
reject outliers as the outlier innovation would utilize the
static threshold set. In addition, it would be slow to correct
estimated states when the required innovation is greater than
that of the static threshold. The saturated innovation for each
radar measurement is defined as

satσ (yk−g(x̌k,0)) =

sat√σR(yR,k−gR(x̌R,k,0))
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where
sat√σε

(r) = max{−ε,min{ε,r}} (30)

Equations 31 and 32 define the varying innovation satura-
tion employed in this outlier rejection method for a given
measurement i.

σ̇i,k = λ1,iσi,k + γ1,iεi,ke−εi,k (31)

ε̇i,k = λ2,i + γ2,i(yi,k−gi(x̌k,0)) (32)

where σi,0 > 0, εi,0 > 0, λ1,i,λ2,i < 0 and γ1,i,γ2,i > 0.
Figure 3 shows the performance of the outlier rejection for

results obtained using weak data association performance.
Many outliers in the innovation are removed, but persistent
increases in innovation allow for the innovation to increase.

Final results shown in Figure 10 benefit less from outlier re-
jection due to the strong performance of the data association
method applied.

Fig. 3. Outlier Rejection

III. RESULTS

A. Simulation Results

Confined Area Random Aerial Trajectory Emulator
(CARATE) [10] is utilized to generate simulation trajectories
iteratively based on previous trajectory history and a set of
random variables. The position of the the UAV at time step
n is determined using Equation 33 where φ ′n is the local
azimuth angle and θ ′n is the local elevation angle.

xn = xn+1 +T vn cos(φ ′n)sin(θ ′n) (33)

yn = yn+1 +T vn sin(φ ′n)sin(θ ′n) (34)

zn = zn+1 +T vn cos(θ ′n) (35)

where the values in the above equation depend on the
previous state values in addition to a random component by

θ
′
n = θseed,n +δθn (36)

φ
′
n = φseed,n +δφn (37)

vn = vseed,n +δvn (38)

The distribution of the random component and the number
of states in which the trajectory generation depends upon can
be modified allowing for a variety of trajectory shapes to be
evaluated. Figure 5 shows estimation error results obtained
from the simulated trajectory in Figure 4.

B. Dataset

The experimental dataset collected, consists of data from
the Continental ARS4-A 2D automotive radar system in
addition to the ground truth location of the radar sensor and
the target via the Vicon motion capture system. Although
the Continental ARS4-A radar system only provides range
and azimuth positional information, the characteristics of the
emitted radar lobes allow for returns over a 16◦ elevation.



Fig. 4. Simulation 3D Estiamtion

Fig. 5. Simulation Error Results

Vicon markers can be seen on the radar system and on the
target in Figure 6. The target shown in Figure 6 is a reflective
corner which produces a strong and consistent radar return
signature.

Figure 2 shows all measurements returned by the radar
system as well as measurements matched to the ground
truth Vicon data using the ground truth data. Comparing
the matched measurements in Figure 2 to the ground truth
produces the measurement error plots shown in Figure 7
and Figure 8. Both measurements can be seen to have
minimal biases. Although when running the trajectory esti-
mation algorithm, ground truth data will not be available, we
account for the biases present in the radar measurements as
sensor biases are often determined through simple calibration
methods. Also, apparent biases could simply be the result of
error between the physical Vicon marker locations and the
measured target location or radar ”origin”.

Due to prolonged issues with the integrated camera data
collection, simulated camera data is added via the ground

Fig. 6. Sensor Suite and Target

Fig. 7. Radar Range Measurement Error

truth data and measurement noise signature based on that
found in the Stary Night Dataset. A focal length 450 pixels is
utilized. Zero-mean gaussian noise with a standard deviation
of 16 pixels is added to the pixel coordinates. This 16
pixel standard deviation is more measurement noise than
what is present in the Stary Night Dataset. External data
association will be assumed for the camera data. In an UAV
tracking system this would be done through image processing
to determine the target UAVs location in the image. For
experimental methods similar to what is conducted in this
project, an April tag could be placed on the front of the
reflective radar target.

C. Experimental Results

Experimental results obtained from the EKF trajectory
estimation system including data association and outlier
rejection are shown in Figure 9 and Figure 10. Figure 9

Fig. 8. Radar Azimuth Measurement Error



shows a 3D visualization of a portion of the estimated
trajectory.

Fig. 9. 3D Trajectory Estimation

Figure 10 shows the error for the six estimated states in
addition the ±3σ bound for each state. The error can be
seen to generally lie within the covariance bound with the
exception of a significant point of error before timestep 200.
This error is not the result of an outlier measurement and
was therefore not removed. The error is caused by a sudden,
unnatural movement during data collection. Current UAVs
are not capable of sudden acceleration at that rate which was
produced by the human controlled reflective radar target.

Various parameters were set in trajectory estimation so-
lution. The scaling factor q of the motion noise is 1/7, the
observation covariance matrix utilizes variances provided by
the radar unit for the range and range rate measurements.
Azimuth variance provided by the radar unit was orders of
magnitude more confident than the data-sheet specification
and caused the estimation to diverge. For this reason, the
variance for the azimuth was set to 0.02 rad in alignment
with the radar specifications. The pixel variance in the
observation covariance matrix was set to 162 for both camera
measurements in alignment with the noise added to the
camera measurements.

IV. DISCUSSION AND CONCLUSION

Overall, this work provides insight into the ability of a
2D automotive radar in trajectory estimation of an object
in 3D space such as a UAV. It is demonstrated that for
sufficiently dense radar data, trajectory can be effectively
estimated through data association, outlier rejection and state
estimation. The cost effectiveness of this solution makes it
worth exploring further.

Current limitations do exist in cases in which data is absent
for extended periods of time, significant noise is present and
the trajectory of the target changes abruptly. Radar return
measurements from UAVs will likely be significantly weaker
that those from the reflective radar target used in this work.
This reduction in signal strength may cause the returned data
to not be consistent enough for the estimation method to
converge to the correct solution. Second, trajectory estima-
tion was evaluated within a short range lab environment.
Although the Continental ARS4-A specification states ranges

up to 250m, the impact of increase in range would also need
to be investigated for a complete solution.

There are multiple potential extensions for future work
in relation to this project. Much work exists in extending
experimental testing to different cases that would be en-
countered if this solution were to be implemented for UAV
trajectory estimation. The main area to be tested further is
the ability of the radar system to provide consistent returns
from a UAV instead of the reflective radar target used in
this project. In addition to further experimental testing, other
trajectory estimation, data association and outlier rejection
methodologies could be investigated. For example, the UKF
may provide improved estimation results. Data association
is critical to the success of this method as the radar system
produces a significant number of false positive measure-
ments. Therefore, it would be beneficial to investigate the
impact of more advanced data association methods such as
probabilistic data association (PDA) or multiple hypothesis
tracking (MHT).

APPENDIX

A. Fisher Information Matrix: Radar Only System

The Fisher Information Matrix (FIM) is defined according
to Equation 39 where θ are the states being estimated, h()
is the observation model and R is the invertible covariance
matrix.

Fθ (X) = ∇θ h(θ)R−1
∇
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For the radar only system with the observation model defined
as 40 the measurements are independent of each other.
Therefore an identity matrix can be used as the covariance
matrix. Rk
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Fig. 10. Estimation Error Results with 3σ Bounds

From these components the FIM is (using α,β ,γ)
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The FIM in reduced row echelon form is

Fθ (X) =



1 0 0 − x2z
c b − xz2

c

0 1 0 b − y2z
c − yz2

c
0 0 1 xa

c
ya
c

za
c

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(53)

where
a = x2 + y2 (54)
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(55)

c = [x2,y2,z2][ẋ, ẏ, ż]T (56)

It can be seen that the matrix is not full rank meaning the
system is unobservable.

B. Fisher Information Matrix: Radar and Camera System

Following the same procedure of Section IV-A, the FIM
in reduced row echelon form for the model in Equation 57
is shown in Equation 58.
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It can be seen that the matrix is not full rank meaning the
system is not observable.

C. Fisher Information Matrix: Radar and Camera System
Without Velocity Estimation

Following the same procedure of Section IV-A, the FIM
in reduced row echelon form for the model in Equation 59
is shown in Equation 60. Note that the difference between
this proof and than of Section IV-B is that only the three
positional states are now being estimated as the three velocity
states have been removed.
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It can be seen that the matrix is full rank meaning the
system is observable.

D. Radar-Camera Locally Weakly Observable

The system radar-camera system with the measurement
model defined in Equation 57 can be shown to be locally
weakly observable through the construction of an observ-
ability matrix from the gradients of the the Lie derivatives
of our non-linear measurement model h() [7][8].

L0hk = hk (61)
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hk = ∇xhk f j (62)
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f j

is the first Lie derivative
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Locally weak observability is proven by showing that the
following chosen observability matrix is full rank:

O =

[
∇xL0hk
∇xL1

f j
hk

]
(64)

The matrix O is placed in its reduced row echelon form using
Gauss-Jordan elimination.

O =
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0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
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0 0 0 0 0 0
0 0 0 0 0 0
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(65)

Since the observability matrix has a rank of six and there
are six estimated states, the camera-radar system is locally,
weakly observable.
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